
The Computer as von Neumann Planned It

M. D. Godfrey*
D. F. Hendry**

Address for correspondence:

Michael D. Godfrey
Stanford University
Information Systems Lab., rm 233
David Packard Bldg.
350 Serra Mall
Stanford, CA, 94305
email: godfrey@isl.stanford.edu

Published in: IEEE Annals of the History of Computing, vol. 15, no. 1, 1993, pp.
11-21.

Correction history:

26 February 2005: A clarification has been provided in Section 4.2 in order to explain
the “inhibitor” symbol used in the inverter. The reference above to the published copy
of this paper was corrected(!). And, since after this paper was published the edited
“First Draft Report on the EDVAC” was published, a reference to this publication is
provided in [1].

15 June 2006: The date of publication of the Weik Report [9] was corrected from
1951 to 1955.

1 December 2010: While correcting a few typographical errors I took the opportunity
to rearrange the Tables, Figures and text to be more readable and more like the
layout of the original publication.

* Information Systems Laboratory, Electrical Engineering Department, Stanford
University, Stanford, CA.

** T-H Engineering, Inc., Altadena, CA.

The Computer as von Neumann Planned It

M. D. Godfrey
D. F. Hendry

ABSTRACT

We describe the computer which was defined in von Neumann’s unpublished
paper First Draft of a Report on the EDVAC, Moore School of Electrical
Engineering, University of Pennsylvania, June 30, 1945. Motivation for the
architecture and design is discussed, and the machine is contrasted with the
EDVAC which was actually constructed.

Keywords: architecture, computer, EDVAC, stack, tagged-memory, von Neu-
mann architecture.

1. Introduction

John von Neumann made a key contribution to the understanding and development of
computer architecture and design in his unpublished report titled First Draft Report
on the EDVAC [1]. However, in reading work which refers to this report and to
the EDVAC (the acronym is defined in [10] to be: Electronic Discrete VAriable
Computer) computer which it described some perplexing observations emerge:

1. The constructed EDVAC is usually described as being based on the von Neumann
Report [1].

2. The von Neumann Report is often described as the collective work of the Moore
School group, unfairly given the sole authorship of von Neumann (see, for exam-
ple, page xv of [11]). This would suggest that many of the ideas in the Report
were shared by the Moore School design group and therefore would be expected
to appear in the constructed machine.

3. The EDVAC has been described on numerous occasions, but these references do
not agree about basic facts: For example, a key feature of any computer is the size
of each word in the addressable memory. On this subject, Goldstine [2] indicates
40 bits, others (Burks [3]) state 32 bits. The only known publication giving the

2 The Computer as von Neumann Planned it

correct value (44 bits) is Knuth [6]. The BRL Report [9] (which is well-known
but was never published) also has the correct value.

Some of the evident confusion stems from the failure to distinguish between the “ED-
VAC” as described by von Neumann in the Report, and the “EDVAC” as constructed
at the Moore School. While copies of the von Neumann Report were informally cir-
culated at the time it was written, the Moore School design documents were kept
private and were in fact classified and marked “CONFIDENTIAL.” ([10] was changed
to “unclassified” in 1947.) The confusion has been aggravated by the fact that von
Neumann’s Report has been reprinted only in incomplete or inaccurate forms.

The main purpose of this paper is to present the architecture given in the von
Neumann Report in a form which is accessible to a wider audience, and to translate
into modern terminology the formal machine definition given in the Report. We also
compare this definition to the definition of the constructed EDVAC system. In doing
this we hope to clarify important, but previously unrecognized, features of the von
Neumann design and to clarify a number of the confusions that have arisen over the
years. The most substantial description of the Moore School EDVAC is given in [10].
The Sections of [10] which specify the Moore School EDVAC in detail were written by
Harry Huskey, who has also been most helpful in several discussions about the work
at the Moore School. The accompanying paper [13] in this issue reviews the actual
performance of the single constructed EDVAC that was delivered to BRL.

However, this paper in no way replaces the original von Neumann Report. Our
purpose is only to make clear the definition of the EDVAC machines, and to clarify
the origins of these definitions. The von Neumann Report contains a wealth of insight
and analysis which is still not available elsewhere. Few people have had the oppor-
tunity to read and decipher the original typescript. One person who has understood
the von Neumann design, particularly from the programming standpoint, is Donald
Knuth. His paper [6] describes the main features and instruction code of the von
Neumann design, and also discusses improvements that von Neumann developed af-
ter he had drafted the Report. It was von Neumann’s intent that these improvements
(most prominently a 32-word register file to replace the 3-register stack) should be
incorporated into the Report. This was never done. The improvements were based
on results from a sort program which von Neumann wrote to test the effectiveness of
his design. A prominent feature of the Report is von Neumann’s recognition that his
computer would not perform relatively efficiently on sorting problems. This remains,
substantially, an unsolved problem to this day.

Unfortunately, reading the Report is made difficult due to the incomplete draft
form of the original, and the propagation of accumulating errors in the versions that
have appeared in print [4, 7, 11]. These reprints have carried over the original errors,
and introduced new errors. Since one reprinting [11] was based on a previous reprint
[7], rather than on the original, further compounding of typographical errors has
occurred. The incomplete copy in [4] is not very useful as it only includes the first
5 introductory Chapters. The inaccurate copies in [7] and [11] make von Neumann’s
original intent quite hard to discover mainly because of numerous mistakes in the
mathematical notation. A typical paragraph in [7] (second paragraph, pg. 239)
reads:

The Computer as von Neumann Planned it 3

Thus each DLA organ has now a number µ = 0, 1, . . . , 255 (or 8-digit
binary), and each minor cycle in it has a number p = 0, 1, . . . , 31
(or 5-digit binary). A minor cycle is completely defined within M by
specifying both numbers i, p. Due to these relationships we propose
to call a DLA organ a major cycle.

This should have read:

Thus each DLA organ has now a number µ = 0, 1, . . . , 255 (or 8-digit
binary), and each minor cycle in it has a number ρ = 0, 1, . . . , 31
(or 5-digit binary). A minor cycle is completely defined within M by
specifying both numbers µ, ρ. Due to these relationships we propose
to call a DLA organ a major cycle.

A few pages later in [7] (page 242) the notation switches from µ to u, but then later
(page 243) p is switched to ρ since the typist stopped typing p and wrote in ρ by
hand. The fact that the first reprint [4] contains only the first 5 of 15 Chapters has
led to additional confusion. For example, the March 1992 issue of Computing Reviews
contains a review of William Aspray’s John von Neumann and the Origins of Modern
Computing. The reviewer states: “(Perhaps the lack of publication accounts for
discrepancies between the author’s quotes and the version of the Report appearing
on pages 355-364 of a book edited by Brian Randell... ” The reviewer is obviously
unaware of the fact that Aspray was referring to the full 15-chapter Report, not the
5 chapters reprinted in Randell [4]. The reviewer goes on to draw further conclusions
about von Neumann’s role in computer development based on the belief that the
Report contained only the 5 introductory chapters, when in fact all of the substance
of the EDVAC design and architecture as expressed by von Neumann is contained in
Chapters 6 through 15.

The original manuscript from the Moore School [1] is easier to read than the
published versions since it has fewer errors and it is easier to identify obvious typo-
graphical mistakes. However, as a first draft, it contains a great many typographical
errors, particularly in the mathematical and special symbols. I have prepared a cor-
rected version which reconstructs what was surely von Neumann’s intended text. This
version has not been published, but it is hoped that this will be possible in the future.
In doing this work I converted the manuscript to TEX form so that it could be easily
managed and made ready for publication. This also had the effect that this version
is easier to read because of the improved typography. (Note added 26 February 2005:
This version has been published. See [1].) Needless to say, the Report is a brilliant
piece of work. All contemporary computer projects made use of material from the
Moore School, typically including a copy of the Report. Alan Turing [12] explicitly
based his computer design on the Report. However, curiously, the computer built
under von Neumann’s guidance at the Institute for Advanced Study did not follow
the architecture or design principles of the von Neumann EDVAC. This fact deserves
further study. (It is of course well-known that von Neumann’s focus of interest had
by then moved to other subjects, including new work on computer theory.)

We hope that both the availability of a corrected text and this introductory guide
will make this key contribution more accessible.

4 The Computer as von Neumann Planned it

2. The Two EDVAC’s

That the EDVAC described by von Neumann (to be referred to as vN-EDVAC) and
the EDVAC constructed at the Moore School (to be referred to as M-EDVAC) are very
different in architecture and design will become clear below. It would be interesting
to know how these differences arose, especially since the IAS machine [8] was closer
to M-EDVAC than it was to vN-EDVAC. Von Neumann did not, after an initial
period, get along very well with some members of the Moore School group due to
both technical and other disagreements. It would appear that he wrote the Report
as an effort to state the architecture and design as he imagined it at that time. The
Report was apparently written while von Neumann was at Los Alamos and delivered
to the Moore School in handwritten form. (Goldstine is reported to have said that he
had a copy of the handwritten draft, but no such copy has been found in his archives
at Hampshire College.) It was typed at the Moore School, but there is no evidence
that von Neumann proof-read the result. The Report in any case had little ultimate
impact on Eckert and Mauchly and the rest of the Moore School design team who
designed M-EDVAC as they wanted it. (This account is based on conversations with
Harry Huskey.)

M-EDVAC was a serial, synchronous, 44-bit word, 4-address (three operand ad-
dresses and the next instruction address), binary machine with 12 operation codes.
It had 4 registers, but these do not appear to have been addressable. It used parallel
comparison of the two arithmetic units for error checking. (See Williams [13] for de-
tails about the realized reliability and performance of the machine.) These and other
features of the machine are summarized in Table 1 which is an excerpt from a BRL
report by Weik[9].

vN-EDVAC was a serial, synchronous, 32-bit word, zero-address, binary machine
with a hierarchical operation-code structure of 8 basic codes, 10 sub-codes, and one
modifier. It had 3 non-addressable registers, organized as a stack mechanism. Tagged
memory was used to distinguish instructions from data. This feature is more fully
explained in Section 3.4.

The main features of the two designs are compared in Table 2.

The Computer as von Neumann Planned it 5

Table 1: M-EDVAC

EDVAC

Specifications from Martin Weik, BRL
Report No. 971.

Manufacturer

Moore School of Electrical Engineering
University of Pennsylvania

Operating Agency

U.S. Army Ordnance Corps Ballistic
Research Lab, APG

General System

Applications: solution of ballistic equations,
bombing and firing tables, fire control, data
reductions, related scientific problems.

Timing: Synchronous
Operation: Sequential
A general purpose computer which may be

used for solving many varieties of
mathematical problems.

Numerical System

Internal number system: Binary
Binary digits per word: 44
Binary digits per instruction: 4

bits/command, 10 bits each address
Instruction per word: 1
Total no. of instructions decoded: 16
Total no. of instructions used: 12
Arithmetic system: Fixed-point
Instruction type: Four-address code
Number range: −(−2−43) ≤ x ≤

(1− 2−43)

Arithmetic Unit

Add time (including storage access): 864
microsec (min 192 max 1536)

Multiply time (including storage access):

2880 microsec (min 2208 max 3552)
Divide time (including storage access): 2930

microsec (min 2256 max 3600)
Construction: Vacuum tube and Diode gates
Number of rapid access word registers: 4
Basic pulse repetition rate: 1.0 megacycle/sec
Arithmetic mode: Serial

Storage

Microsec
Media Words Access

Mercury Acoustic
Delay Line 1024 48-384

Magnetic Drum 4608 17,000
Includes relay hunting and closure. The

information transfer to and from the drum is
at one megacycle per second. The block
length is optional from 1 to 384 words per
transfer instruction.

Input

Media Speed

Photoelectric Tape
Reader 942 sexadec

chars/sec
78 words/sec

Card Reader(IBM) 15 rows/sec
100 cards/min

Output

Media Speed

Paper Tape Perf. 6 sexadecimal
chars/sec

30 words/min
Teletypewriter 6 sexadecimal

chars/sec
30 words/min

Card Punch(IBM) 100 cards/min
800 words/min

6 The Computer as von Neumann Planned it

Table 1-cont: M-EDVAC

Number of Circuit Elements

Tubes: 3563
Tube Types: 19
Crystal diodes: 8000
Magnetic elements: 1325 (relays, coils

and trans)
Capacitors: 5500 approx.
Resistors: 12000 approx.
Neons: 320 approx.

Checking features

Fixed comparison—Two arithmetic units
perform computation simultaneously.

Discrepancies halt machine.
Paper tape reader error detection.

Physical Factors

Power Consumption: Computer, 50 kW
Space occupied: Computer, 490 sq. ft.
Total weight: Computer, 17,300 lbs.
Power consumption: Air Cond., 25 kW
Space occupied: Air Cond. 6 sq. ft.
Total weight: Air Cond. 4345 lbs.
Capacity: Air Cond. 20 tons

Manufacturing Record

Number produced: 1
Number in current operation: 1

Cost

Rental rates for additional equipment:
IBM card reader $82.50
IBM card punch $77.00
Approximate cost of basic system: $467,000

Personnel Requirements

Daily Operation: 3 8-hour shifts. No. of
Tech: 8.

7 days/week
No engineers are assigned to operation of the

computer, but are used for design and
development of improvements for the
computer. The technicians consult with
engineers when a total breakdown occurs.

Reliability and Operating Experience

Average error free running period: 8 hours
Operation ratio: 0.79. Good time: 130.5 hrs.
(Figures for ’55) Attempted to run: 166

hrs./wk.
No. of different kinds of plug-in units: 3
No. of separate cabinets (excluding power and

air cond.): 12
Operating ratio figures for 1954:
Operating ratio: 0.79. Good time: 129 hrs.

Attempted to run: 163 hrs./wk.

Additional Features and Remarks

Oscilloscope and neon indicator for viewing
contents of any storage location at any time.

Exceed capacity options: halt, ignore, transfer
control, or go to selected location.

Unused instruction (command) halt.
Storage of previously executed instruction and

which storage location it came from, for
viewing during code checking.

Storage of current instruction and storage
location from which it originated.

Address halt when prescribed address appears
in any of 4 addresses of instruction to be
executed by computer.

Tape reader error detection.

The Computer as von Neumann Planned it 7

Table 2: vN-EDVAC vs. M-EDVAC

Feature: vN-EDVAC M-EDVAC

Basic Design

Timing: Synchronous Synchronous
Operation: Sequential Sequential

Numerical System

Internal number system: Binary Binary
Binary digits per word: 32 44
Data bits per word: 31 32
Memory tag bits: 1 0
Bits/command: 3+5 4
Binary digits per address: 13 10
Instructions per word: 1 1
No. of instructions decoded: 8+16 16
No. of instructions used: 8+10 12
Arithmetic system: Fixed-point Fixed-point
Instruction type: Zero-address code Four-address code
No. of registers: 3 (non-addressable) 4 (non-addressable (?))
Number range: −(−2−30) ≤ x ≤ (1− 2−30) −(−2−43) ≤ x ≤ (1− 2−43)

Storage

Microsec
Media Words Words Access

Mercury Acoustic
Delay Line 8192 1024 48-384

Magnetic Drum 4608 17,000

Number of Circuit Elements

Tubes: 2000-3000 (est) 3563
Tube Types: 19
Crystal diodes: 8000
Magnetic elements: 1325 (relays, coils

and trans)
Capacitors: 5500 approx.
Resistors: 12000 approx.
Neons: 320 approx.

8 The Computer as von Neumann Planned it

3. vN-EDVAC Architecture

Throughout the Report von Neumann mentions the need to develop the structure of
the system giving consideration to both design and architecture issues. The inter-
action of time and space and the need for locality in time and space are repeatedly
discussed. These issues arise particularly in the determination of the size and perfor-
mance of the delay line memory and in choices of primitive operations.

One may subdivide architecture into standard categories: addressing, instruction
definition, protection, interrupt control, and input-output. Only one aspect of the
last three categories is defined in the Report. Instruction memory (words tagged
as containing instructions) was protected against modification of any fields except
the address field. It is not explained how memory could be initially loaded with
instructions. However, this was presumably a part of the I/O system.

3.1 Addressing Structure

All address values are included in the load, store and control transfer instruction
fields or are based on the value of the instruction address register (PC). Address
modification is carried out by computation of the desired address and then storing
the address into the address field of the appropriate instruction in memory. All
addresses are given as a variable pair [µ, ρ] but this is purely for design reasons. All
addresses are 13-bit, word addresses.

3.2 Number Representation and Arithmetic Operation

All numeric data (termed standard numbers) are 31-bit signed binary integers. The
rightmost (first) bit in the 32-bit word is the tag bit, with zero meaning that the
word contains a standard number. (Memory locations are taken to be increasing to
the left.) Data are stored least significant bit first, sign bit following (to the left
of) the most significant bit and with the binary point taken to be between the most
significant and the sign bit. Negative numbers are in two’s-complement form. Thus,
the range of standard numbers is −1 ≤ n < 1 with a precision of approximately 8
decimal digits. At this point, and throughout the Report, despite a couple of switches
of notation, von Neumann is clearly a “little-endian” (See [5]). All data are arranged
so that the least significant bit is “first.”

Standard twos complement arithmetic is provided for addition, subtraction, multi-
plication, division, and square root. Rounding is provided by computing an additional
check bit and “rounding to the nearest odd digit.” This was done to avoid carry due
to rounding. No provision is made for detecting out-of-range results for addition,
subtraction or division.

The Computer as von Neumann Planned it 9

3.3 The Central Arithmetic (CA) Unit

The CA contains three registers: Ica, Jca, and Oca. Ica is the input register and
may be viewed as the top-of-stack register. Jca is the second word of the stack, but
may also be the source register for transfers within CA. Oca receives the output of
operations which use Ica and Jca as inputs. It always acts as an accumulator, i.e. all
results are formed by:

result + Oca → Oca.

However, the store operations optionally allow clearing of Oca after the store opera-
tion. All store operations store Oca. The interconnection of these registers is shown
in Figure 1.

CA

Jca

Ica

Ocaop

>
>

>

>
>

>
>

Figure 1: CA Diagram

This Figure is a more complete version of Figure 17 in the Report. The only way in
which data enter the CA is by being loaded into Ica. This always causes the previous
contents of Ica to be pushed into Jca. The only path for data out of the CA is from
Oca. Operation of the binary operators, then, involves a sequence of the form:

LOAD M[j] Ica → Jca, M [j]→ Ica
LOAD M[k] Ica → Jca, M [k]→ Ica
OP
STORE M[r] Oca →M [r], optionally clear Oca

In operations such as the above, Ica and Oca are implicitly addressed, as in stack-
based or zero-address systems. However, instructions are also available to cause the
transfers:

Ica → Oca,
Jca → Oca,
Oca → Ica,

as indicated in Figure 1. Thus, for example, a program segment to compute

S =
4∑

i=1

xiyi

for literal data xi and yi could be:

10 The Computer as von Neumann Planned it

0 Load zero.
× Clear accumulator.
x1 Implicit load immediate x1
y1 Implicit load immediate y1
× Multiply and accumulate.
x2
y2 Repeat
× for
x3
y3 remaining data.
×
x4
y4
×
→M [addr(S)] Store result at address of S.

A more fully parametrized procedure for computing inner products could be con-
structed using data address computations and loop control constructs. The lack of
any address indexing mechanism or index registers causes array referencing to require
additional instructions, as is true of many “modern” RISC (Reduced Instruction Set
Computer) designs.

3.4 Instruction Definition

The definition and operation of the Central Control (CC) and Central Arithmetic
(CA) sections of the vN-EDVAC are described in Chapters 11 and 13 through 15 of
the Report. A full understanding of these Chapters requires some effort. Table 3
provides a glossary of the main components of the processor:

Table 3: Glossary

CA Central Arithmetic-Logic Unit
CC Central Control Unit
PC Program Counter (address of current instruction)
SG Switching and Gating Unit

A dl feedback amplifier
E-element gate
M Memory
R External storage
I Input channel
O Output channel
L Memory read (Lo) and write (Li) lines

s dl select line

dl(k) k unit delay

M1 1-bit memory

lk k-bit (serial) memory
minor cycle 32-bit word
major cycle 32 words of memory

The Computer as von Neumann Planned it 11

The CC section is based on a conventional instruction sequencing mechanism for
normal instruction processing. Given that the address in PC points to the current
instruction in memory, the instruction at that address is fetched, decoded, executed,
PC is incremented, and the operation cycle is repeated. (Note that M-EDVAC loaded
the next PC value from a field in the current instruction word as is common in many
microcode systems.) There are two exceptions to this standard instruction processing
loop. First, is a control transfer instruction which loads PC with a new address. von
Neumann discussed the possibility of an execute-remote operation as a “transient
transfer,” but decided against implementation. Second, if when an instruction word
is fetched, it is found that the instruction tag bit is clear an implicit load-immediate
instruction is executed. Thus, the contents of the word addressed by PC are loaded
into Ica and the PC is incremented in the normal way.

In the Report, the operations within CA and the load and store operations are
described first. These (termed the unpooled orders) are not the actual machine in-
structions, but are distinct functional components of the instructions. Tables 4 and
5 summarize the notation and meaning for the unpooled orders. The actual instruc-
tions are termed the pooled orders and are summarized in Table 6. As can be seen,
there are 8 instruction types (t′). The CA instructions use the sub-code field w, and
the CA-store instructions use w and the modifier c. The main reason given for using
the pooled orders as the actual machine instructions was the improved bit utilization
in the instruction fields. As can be seen by comparing the unpooled orders in Table
5 with the pooled orders in Table 6, the only lost functions are δ, ε, and θ taken as
separate operations. Since those operations would normally follow an α operation,
the pooling seems natural. While the bit utilization of instruction words is still quite
low (the minimum number of unused bits is 10), von Neumann remarks that code
space is likely to be small as compared to data space, and room should be left for
expansion of the address field. Such reasoning and foresight would have been helpful
to recent and current microprocessor designs. Table 6 is arranged using the layout
that might have been used by von Neumann, since he generally referred to the fields
in the instructions using a layout of least significant bit at the right. (However, for
numerical data, the 31 bits i1...i31, were usually referred to in left to right order even
though they were stored “least significant bit first.”) The instruction formats could
equally have been drawn with the bit order reversed so that they would read more
naturally from left to right. However, this arrangement emphasizes the bit-serial,
“little-end” first structure of the machine.

12 The Computer as von Neumann Planned it

Table 4: Notation for Instruction Fields

i0 - tag bit
0 - data
1 - instruction

t - unpooled instruction code
t′ - pooled instruction code
w - operation sub-code for CA (stack) operations
c - modifier for store operations

0 - clear Oca

1 - retain value in Oca

µ - major cycle (delay line) address
ρ - minor cycle (word within delay line) address

The two means of carrying out load-immediate operations deserve a comment.
First, if a data word (i0 = 0) is encountered during instruction processing an implied
load of the contents of the word is carried out. In addition, the γ instruction (the
second instruction in Table 6) loads the word which immediately follows it. It was
not mentioned that γ should also have the side-effect of incrementing the PC an
extra time so that the following word is not subsequently executed as an instruction.
However, γ would appear to be almost entirely redundant since, if the following word
is data (i0 = 0) then just executing the following word as an implied load-immediate
would have exactly the same effect as γ. It does not appear that von Neumann
considered the possibility of following γ with an instruction word (i0 = 1) so that
instructions could be loaded by this means.

Unconditional control transfer is provided by the ζ instruction. Conditional trans-
fers use the s operation (sign test) to select which address value will be moved to Oca.
This address must then be stored into the address field of an immediately following ζ
instruction if an immediate transfer is to be made. However, the store could be made
into a subsequent location in order to achieve some of the effects (and side-effects) of
the delayed branch (RISC) operation.

The Computer as von Neumann Planned it 13

Table 5: Operation code Definitions

1. Unpooled types (t):

order name definition

α CC operations (stack) See 2. below
β load M [µ, ρ]→ Ica
γ load immediate M [PC + 1]→ Ica
δ store Oca →M [µ, ρ]
ε store immediate Oca →M [PC + 1]
θ CC move (stack) Oca → Ica
ζ load PC (jump) M [µ, ρ]→ PC
η I/O not defined

2. α operations:

modifier value operation definition

w = 0 + (Ica + Jca) +Oca → Oca
1 − (Ica − Jca) +Oca → Oca
2 × (Ica × Jca) +Oca → Oca
3 / (Ica/Jca) +Oca → Oca
4

√ √
Ica +Oca → Oca

5 i Ica → Oca
6 j Jca → Oca
7 s perform i or j depending on sign of Oca
8 db decimal → binary
9 bd binary → decimal

3. Memory addressing:

µ[µ7...µ0] major memory cycle (segment)
ρ[ρ4...ρ0] minor memory cycle (word)
[µ, ρ] 13-bit memory address (word-address)

Note: For store operations, if i0 = 1 at the target address M [µ, ρ] then only the
[µ, ρ] field is replaced by the high-order 13 bits of the operand.

Table 6 shows the organization of the pooled orders. Table 7 is taken directly
from the von Neumann Report [4]. It shows the manner in which von Neumann
summarized the logical definition of the machine.

14 The Computer as von Neumann Planned it

Table 6: Pooled Orders

type (t′) instruction format definition meaning
(least significant bit at right,
bit width of each field indicated
below each instruction)

i0 = 0
i0
0
1 M [PC]→ Ica load immediate

1

γ
i0t′

10
13 M [PC + 1]→ Ica load immediate

1

α+ δ
134 18 5 10

i0t′w cµ ρ

01
OP ; stack operation;
Oca →M [µ, ρ] store

α+ ε
i0t′w c

12
134 123 OP ; stack operation;

Oca →M [PC + 1] store immediate

α+ θ
i0t′w c

134 123
13

OP ; stack operation;
Oca → Ica load

α
i0t′w c

14
134 123 OP stack operation

β
i0t′µ ρ

15
138 5 15 M [µ, ρ]→ Ica load

ζ
i0t′µ ρ

138 5 15
16

M [µ, ρ]→ PC control transfer

η
i0t′

17
not defined

13 I/O input-output

Note: Von Neumann did not assign numeric codes to the 8 pooled orders. (At the
end of the Report he indicated that he would do that next.) I have filled in
numeric codes in the t′ field in this Table just to make it more definite. Also,
c is the Oca clear flag as defined in Table 4, and w is the CA order modifier
as defined in Table 5. The CA processing flow is shown in Figure 1 which is
adapted from Figure 17 in the Report.

The Computer as von Neumann Planned it 15

Table 7: Instruction Definition

(I)
Type

(II)
Meaning

(III)
Short Symbol

(IV)
Code Symbol

Minor cycle
I = (iv) =
(i0i1i2 · · · i31)

Standard
Number
or Order
(γ)

Storage for the number defined by ξ = i31i30 · · · i1 =∑31
v=1 iv2v−31 (mod 2) −1 ≤ ξ < 1. i31 is the sign: 0

for +, 1 for −. If CC is connected to this minor cycle,
then it operates as an order, causing the transfer of
ξ into Ica. This does not apply however if this minor
cycle follows immediately upon an order w → A or
wh→ A.

Nξ i0 = 0

Order
(α)+(δ)

Order
(α) + (ε)

Order
(α)+(θ)

Order
(α)

Order to carry out the operation w in CA and to
dispose of the result. w is from the list of 11.4. These
are the operations of 11.4, with their current numbers
w.decimal and w.binary, and their symbols w:

w.decimal w.binary w w.decimal w.binary w

0 0000 + 5 0101 i

1 0001 − 6 0110 j

2 0010 × 7 0111 s

3 0011 ÷ 8 1000 db

4 0100
√

9 1001 bd

h means that the result is to be held in Oca. → µρ
means that the result is to be transferred into the
minor cycle ρ in the major cycle µ; → f, that it is
to be transferred into the minor cycle immediately
following upon the order ε; → A, that it is to be
transferred into Ica; no→, that no disposal is wanted
(apart from h).

w→ µρ
or
wh→ µρ

w→ f
or
wh→ f

w→ A
or
wh→ A

wh

i0 = 1

Order
(β)

Order to transfer the number in the minor cycle ρ in
the major cycle µ into Ica.

A← µρ

Order
(ζ)

Order to connect CC with the minor cycle ρ in the
major cycle µ.

C← µρ

16 The Computer as von Neumann Planned it

4. vN-EDVAC Design

Von Neumann developed both the architecture and the design of the vN-EDVAC
based on detailed analysis of the performance and resource requirements of a number
of computational problems. Normal instruction sequencing was intended to permit
instruction execution at the rate at which data arrived from the output of a delay
line. The length of the delay line was determined based on the assumption that the
average delay for a memory reference after an arithmetic operation would be short
as compared to the arithmetic time. The ability to retain intermediate results in the
CA registers reduces the frequency of store and load operations which would, unless
addresses were carefully chosen, take an average of half a major (delay line) cycle
time.

4.1 Memory Design

The intended memory was to be made up of mercury delay lines. Each delay line
contained 32 32-bit words. At a clock rate of 1Mhz the circulation time of the delay
line was about 1ms. The size of the delay lines was determined from the fact that 1ms
was approximately the arithmetic time of the CA unit. Thus, new operands would
become available from the current delay line at about the time they would be needed
by the CA. The spirit of this analysis was sound, but it neglected important factors
including instruction fetch requirements.

The size of the memory was determined after consideration of several possible
numerical problems. In the course of the analysis of memory size and logic complexity,
von Neumann remarks: “the decisive part of the device, determining more than any
other part its feasibility, dimensions and cost, is the memory.” Based on this analysis,
von Neumann settled on a total memory size of 8k words or 256 delay lines.

4.2 E-elements and Logic

This is, as far as I am aware, the first substantial work (since Babbage) which clearly
separated logic design from implementation, and gave a formal scheme for logic rep-
resentation. It is a curious fact that the notation which was fully established and
extensively used here was totally absent from subsequent works, particularly [8] and
[10]. The simplest gate was drawn as

−−©→−
while an inverter was drawn as

−−•©→−
Note that the −−• symbol is an “absolute” inhibitor. See Section 6.4 of [1].

The Computer as von Neumann Planned it 17

A two input OR gate would be
−−−−©→−

The notation
−−−−2©→−

was used for a two input AND gate. A three input AND gate was given by
−−−−−−3©→−

Thus, the number inside the circle indicated the minimum number of active inputs
required to drive the output active. It is noted that a two input AND gate would be
defined by

>

>

>

in terms of elementary gates. The the number of arrows on the output line indicated
the number of unit delays (τ) introduced by the element. The arrow notation also
served to indicate the output line. Thus

−−©→−→−
was used to indicate a construct with total delay of 2τ , where τ is the basic gate
delay time.

The notion of composition was clearly established, so that, for instance, the adder
circuit

∩
∩

a4⊃
⊃

=

3

2

c

a′

a′′
s

>>

>

>

>

was subsequently represented by

a4⊃
⊃

∩

which was termed a block symbol.

4.2.1 Complexity

Due to the choice of purely serial and synchronous operation, it was expected that

18 The Computer as von Neumann Planned it

the logic (CA and CC) would require a few hundred vacuum tubes and the memory
would require around 2000, for a total count of under 2500.

5. Conclusion
The computer defined in the First Draft Report on the EDVAC was never built and
its architecture and design seem now to be forgotten. The Report was a fundamental
influence on Turing’s work. However, Turing’s design, the Pilot ACE, was only built
after long delay caused by indecision on the part of the National Physical Laboratory,
and long after Turing had left. Thus, even in its time, the von Neumann Report was
not as influential as would have been expected.

This paper has given an indication of the nature of the design and of some of the
innovations which were present in this first computer definition.

The Computer as von Neumann Planned it 19

Acknowledgments

This work was supported, in part, by a Grant from Apple Computer, Inc.

References

[1] Von Neumann, J., “First Draft of a Report on the EDVAC,” Moore School of
Electrical Engineering, University of Pennsylvania, June 30, 1945. Corrected and
complete version published in IEEE Annals of the History of Computing, vol. 15,
No.4, 1993, pp. 27-75.

[2] Goldstine, H. H., The Computer from Pascal to von Neumann, Princeton Univer-
sity Press, 1972.

[3] Burks, A. W., “From ENIAC to the Stored-Program Computer: Two Revo-
lutions in Computers,” in A History of Computing in the Twentieth Century,
eds. N. Metropolis, J. Howlett, and Gian-Carlo Rota, Academic Press, 1980.

[4] Von Neumann, J., “First Draft of a Report on the EDVAC,” incomplete (first 5
of 15 completed Chapters), in The Origins of Digital Computers, ed. B. Randell,
Springer-Verlag, 1973.

[5] Cohen, D., “On Holy Wars and a Plea for Peace,” USC/ISI, April 1980.

[6] Knuth, D. E., “Von Neumann’s First Computer Program,” Computer Surveys,
vol. 2, No. 4, Dec. 1970, pp. 247-260.

[7] Stern, N., From ENIAC to UNIVAC, An Appraisal of the Eckert-Mauchly Com-
puters, Digital Press, 1981, ISBN 0-932376-14-2.

[8] Burks, A. W., Goldstine, H. H., and von Neumann, J., “Preliminary Discussion
of the Logical Design of an Electronic Computing Instrument,” Second Edition,
2 September 1947, Institute for Advanced Study, Princeton, N.J.

[9] Weik, M. H., “A Survey of Domestic Electronic Digital Computing Systems,”
Ballistic Research Laboratories Report No. 971, December 1951, Aberdeen, Md.
Correction 15 June 2006: The date of this report is 1955, not 1951. This is
confirmed in the Third Survey of Domestic Electronic Digital Computing Systems,
Martin H. Weik, BRL Report No. 1115, March 1961.

[10] Eckert, J. P. Jr. and Mauchly, J. W., “AUTOMATIC HIGH-SPEED COMPUT-
ING: A Progress Report on the EDVAC,” Report of Work under Contract No. W-
670-ORD-4926, Supplement No. 4, 30 September 1945.

[11] Aspray, W. and Burks, A., eds., Papers of John von Neumann on Computers and
Computer Theory, Charles Babbage Institute Reprint Series for the History of
Computing; v. 12, 1987, ISBN 0-262-22030-X.

[12] Turing, A. M., “Proposals for Development in the Mathematics Division of an
Automatic Computing Engine (ACE),” proposal presented to the National Phys-
ical Laboratory, 1945. Reprinted as Com Sci 57, National Physical Laboratory,
April 1972.

[13] Williams, M. “The Origins, Uses and Fate of the EDVAC,” this issue.

